Revisiting Degree Distribution Models for Social Graph Analysis
نویسندگان
چکیده
Degree distribution models are incredibly important tools for analyzing and understanding the structure and formation of social networks, and can help guide the design of efficient graph algorithms. In particular, the Power-law degree distribution has long been used to model the structure of online social networks, and is the basis for algorithms and heuristics in graph applications such as influence maximization and social search. Along with recent measurement results, our interest in this topic was sparked by our own experimental results on social graphs that deviated significantly from those predicted by a Power-law model. In this work, we seek a deeper understanding of these deviations, and propose an alternative model with significant implications on graph algorithms and applications. We start by quantifying this artifact using a variety of real social graphs, and show that their structures cannot be accurately modeled using elementary distributions including the Power-law. Instead, we propose the ParetoLognormal (PLN) model, verify its goodness-of-fit using graphical and statistical methods, and present an analytical study of its asymptotical differences with the Power-law. To demonstrate the quantitative benefits of the PLN model, we compare the results of three wide-ranging graph applications on real social graphs against those on synthetic graphs generated using the PLN and Power-law models. We show that synthetic graphs generated using PLN are much better predictors of degree distributions in real graphs, and produce experimental results with errors that are orders-of-magnitude smaller than those produced by the Power-law model.
منابع مشابه
Comparative analysis of organizational processes by the use of the social network concepts
This study presents a comparative analysis of redesigned models of organizational processes by making use of social network concepts. After doing re-engineering of organizational processes which had been conducted in the headquarters of Mazandaran Province Education Department, different methods were used which included the alpha algorithm, alpha⁺, genetics and heuristics. Every one of these me...
متن کاملSampling from social networks’s graph based on topological properties and bee colony algorithm
In recent years, the sampling problem in massive graphs of social networks has attracted much attention for fast analyzing a small and good sample instead of a huge network. Many algorithms have been proposed for sampling of social network’ graph. The purpose of these algorithms is to create a sample that is approximately similar to the original network’s graph in terms of properties such as de...
متن کاملIncorporating Assortativity and Degree Dependence into Scalable Network Models
Due to the recent availability of large complex networks, considerable analysis has focused on understanding and characterizing the properties of these networks. Scalable generative graph models focus on modeling distributions of graphs that match real world network properties and scale to large datasets. Much work has focused on modeling networks with a power law degree distribution, clusterin...
متن کاملRandom Dot Product Graph Models for Social Networks
Inspired by the recent interest in combining geometry with random graph models, we explore in this paper two generalizations of the random dot product graph model proposed by Kraetzl, Nickel and Scheinerman, and Tucker [1, 2]. In particular we consider the properties of clustering, diameter and degree distribution with respect to these models. Additionally we explore the conductance of these mo...
متن کاملRecent Progress in Complex Network Analysis: Models of Random Intersection Graphs
Experimental results show that in large complex networks such as internet or biological networks, there is a tendency to connect elements which have a common neighbor. This tendency in theoretical random graph models is depicted by the asymptotically constant clustering coefficient. Moreover complex networks have power law degree distribution and small diameter (small world phenomena), thus the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1108.0027 شماره
صفحات -
تاریخ انتشار 2010